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Received 22 May 1992 

Abstract. In order to study the behaviour of the inverted Caldirola-Kanai Hamiltonian in 
the quantum tunnelling effect, we consider a wavepacket as the initial state and we calculate 
exactly the probability density. We also obtain the transmission and reflection probability, 
the expectation value of the panicle's energy and the sojourn time which appears to be 
an increasing function of the dissipation parameter y A similar result is also obtained by 
considering a normalized plane W a v e  as the initial state. 

The problem ofthe time-dependent oscillator has long been a research area of consider- 
able interest because of its various applications in different areas of physics. For 
instance, in molecular physics, quantum chemistry and quantum optics many quantum 
mechanical effects are treated phenomenologically by means of the time-dependent 
parameiers in ihe iiamiiionian of the damped harmonic osciiiaior [i,  ij, i.e. the weii 
known Caldirola-Kanai Hamiltonian 

2 
H=Pe-"+-w m 2 2 7 1  q e . 

2m 2 

Recently, extensive efforts have been made to obtain exact solutions to the Schrodinger 
equation for osciiiator systems wiih iime-dependent Hamiitonians [3,4j. in ihis ietter 
we attempt to present the behaviour in the quantum tunnelling effect of a Hamiltonian 
which is called the inverted Caldirola-Kanai Hamiltonian [SI and which is formally 
obtainable from (1) by the replacement 

w + iw. (2) 
I inus this iiamiiionian has ihe foiiowifig form: 

Of course in spite of many useful analogies between (1) and (3). the physics of the 
two cases is very different; the energy eigenstates of (3) are not square integrable and 
they are doubly degenerate, e.g. with respect to incidence from left or right or altema- 
tively with respect to parity [ 5 ] .  When y tends to zero we obtain the Hamiltonian of 
the inverted harmonic oscillator. Actually the inverted harmonic oscillator besides its 
applications in masers [6 ] ,  has also been used in reactive scattering [7], due to the 

t Also at: IBR, Po Box 1577, Palm Harbor, Florida 34682.1577. USA 
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fact that for this kind of potential the tunnelling time does not diverge as in the case 
of a square barrier at threshold in the semiclassical limit analysis [S. 91. Also we must 
notice that, similarly to the Hamiltonian of the inverted harmonic oscillator, the inverted 
Caldirola-Kanai Hamiltonian does also produce squeezed states as has been proved 
by Jannussis e? a1 [5,10]. 

In order to study the quantum tunnelling effect for the Hamiltonian (3) we consider 
in this letter a particle in the field of our potential barrier in a state initially prepared 
in the form of a wavepacket 

Such a state establishes a certain initial probability distribution of finding the particle 
in a region around the point qo, which throughout this work will be assumed to be on 
the ieit-hand side of the barrier. n u s  the most signitcant part of t'he probabiiity 
distribution lies mainly on the left-band side of the barrier and furthermore the 
distribution may extend through a tail on the other side. Our approach to the tunnelling 
problem will rely on processes leading to transport of the above initial probability 
from the left-hand side to the right-hand side of the barrier. 

Provided the exact propagator is obtained, the wavefunction of our system can be 
calculated, according to the formula 

+m 

* ~ q o , , , o l ~ ~ ,  t )  = J-a G(q, t / d .  O ) ~ ( q o , p o ~ ( q ' )  dq'. ( 5 )  

As is well known, the path integral formalism provides an approach to the calcula- 
tion of the propagator associated with the one-dimensional classical quadratic action 
..F _ _  - - - : I I - ~ - -  ... :A A "--" A-..+ ~~...:i+,...:~.. r i i i  A A:s~---.. -.._ I. 
"1 a11 "DCIIIa,", J p l n l l  WIU,  ,,,,,s-"GpGL,.LbllL L I a L I I I I I L V . I I 1 1 1 .  L 11,. n Ylllrlrlll a y y I " 1 1 b L '  

to the problem, which is based on Lie-algebraic methods has been developed in [12], 
exploiting the underlying SU(1,l) structure of the quadratic Hamiltonians 

P2 Y ( t )  m 
2m 2 

H = Z (  t )  -+- (qp+pq)+T o*X( t ) q Z .  

In the present letter, adopting the formalism of [12,13], we obtain the propagator of 
the SU(1,l) Hamiltonian (3), which has the following form: 

i mw 
G(q, t / q ' , O )  ( 2 ~ r i ~ ~ h f i t ) " ~ ~ ~ ~ ( 2 f 1  cosh(fit+'p)sinhnt 

x [e"(cosh2 'p +sinh2 f i f ) q 2 +  q'2 cosh2(Rt+'p) 

-2e"'2cosh 'p cosh(fit+'p)qq'] (7) i 
with 

and 'p = tanh-' (8) 2R' 

As can be easily seen, for y + 0 we obtain the propagator of the inverted harmonic 
oscillator [14]. Also it must be noticed that the above propagator (7) is not diagonal 
in q and q' and does not satisfy the time reversal property 

fi=(w2+y2/4)1/2 

G(q, t / q ' , O ) =  G*(q' ,O/q,  t ) .  (9 )  
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The breaking of the reciprocity condition (9) is to be expected for dissipative systems 
of the type (1) or (31, according to [ll]. For more details about the dynamical behaviour 
of systems driven by Hamiltonians (6) the reader is directed to [12]. 

Thus now we find the solution of the time-dependent Schrodinger equation accord- 
ing to equation ( 5 )  

Po K 
O -  d 

The same results can also be obtained, the evolution operator fi(f) of [12, formulae 
(ij) or ( i i j j  acting directiy on the initiai state (4j. 

Then a straightforward calculation yields the probability density of finding the 
particle in the vicinity of the observation point q at time i, 

where 

and A is a characteristic length of the scattering process, given by 

and 

Also for y + O  we obtain exactly the results of [15, 161. 
The essential feature in the tunnelling effect lies in that part of probability of finding 

the particle, initially on the entry side of the barrier, moving into the observation side. 
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The ratio of the net amount of probability on the right-hand side of the bamer that 
has migrated into this region in time t over the initial probability of finding the particle 
on the entry side, is given by the relation [16] 

T(f)=[/:m~(q,O)dq] 1 0 Cdq,r)-dq,0)1dq (17) 
- I  m 

where the point zero is the coordinate of the barrier top. 
Therefore we obtain the following form of the transmission probability: 

where the symbol Erf(x) represents the error function 

2 x  
E r f ( x ) = x  Jb e-"dt 

and according to the formula R = 1 - T we find the reflection probability 

where Erf,(x) = 1 -Erf(x). 
What actually determines the tunnelling effect is the energy associated with the 

initial wavepacket, which has to be smaller than the bamer height. Since our system 
is not conservative, the expectation value of the particle's energy will not remain 
constant in the course of time. In the present case the expected energy is given by 

or 

In order that the current produced at the observation point he of tunnelling origin 
we must have (H) <0, since the top of the bamer for the potential energy ( 3 )  is placed 
at zero as we have already assumed. Thus we must take 

As we can easily see the above relation is fully satisfied for large and positive values 
of the factor yr. 

In the following we will calculate the sojoum time or the dwell time as usually 
referred to in the literature on tunnelling times. Given the many contradictions which 
exist regarding the correct definition of the tunnelling time [S, 171, we shall not consider 
this problem here and we will present the tunnelling time as given by the authors of 
[le] (cf also the appendix of [SI). 

Therefore we define as mean total sojourn time the quantity 
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where (a ,  b )  is an interval containing the barrier. Thus with the substitution of equation 
(12) into (23) we obtain 

To a first approximation we may have 

and 

and therefore we take 

where b ( t )  is defined in equation (14) and A in equation ( 1 5 ) .  
Assuming that U >> A (e.g. an extended wavepacket) we can obtain 

1 ( b - a )  e11/2 

2 Jzu dt 1-z cosh(flr + rp) 
.((U, b ) ,  -m, +m, Ur) =- - cosh rp 

T ( b - a )  
2 0  Jzu f (Y. 0 )  - 

where 

A similar result also appears in the case where we take, as an initial wavefunction, 
the normalized plane wave, e.g. 

1 
T(q,o)=-ee'*4 m (box normalization). (29) 

Thus, according to ( 5 )  we find 

xexp(-L sinha t  
2mw cosh(at+p) 

and 

1 
2L I*( q, t ) I2  = - eb('). 
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-3  00 -2.25 -1.50 -0 .15 0 0.15 1.50 2.25 3.m 

Therefore according to @3j we obtain 
TI ( b - a )  

~(((1, b ) ,  -m, +m; 9) =- - f (7, w )  2 0  L 

and for L = a u  we obtain, exactly, the result (27). 
It can be easily found that the existence of the factor f(y, w )  in the expressions 

(27) and (32) enhances the sojoum time, taking its minimum value f(y, o) = 1 for 
y = 0. This situation is more clearly depicted in figure 1. The decrease in the tunnelling 
process due to the dissipation has also been predicted in a different way by other 
authors (see, for instance, [9 ] ) .  
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